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The Vector and Scalar Potential formulation for the numerical solution of laminar incom- 
pressible through-flow problems is reviewed. Some deficiencies of this method are discussed, 
and in particular a subtle but serious problem associated with the Scalar Potential is unveiled. 
An improved Vorticity-Vector Potential formulation is then presented for incompressible 
flows in ducts of constant but arbitrary cross sections. The method features a new irrotational 
component of velocity which essentially removes the problem source by eliminating the 
necessity of a Scalar Potential. 

1. INTRODUCTION 

The modelling of viscous flow development in tubes and ducts has been a subject 
of extensive research for some time. Early attempts include the noted work of 
Langhaar [ 11, who developed a linearization technique for the Navier-Stokes 
equations, and successfully obtained an approximate solution for incompressible 
laminar flow development in a circular tube. Han [2] later extended this technique to 
flows in the entrance region of rectangular ducts. Since then, there have been 
numerous studies devoted to this subject, many of which include analyses in three 
dimensions, (e.g., Sparrow et al. [3], Carlson and Hornbeck [4] and Ghia et al. [5]). 

Unlike numerical studies in two dimensions, in which the use of the vorticity- 
stream function is by far the most popular approach (see [6]), 3-D duct flow analyses 
have almost invariably been tackled by the pressure-velocity formulations. Although 
the existence of a 3-D analogue of the stream function, referred to as the Vector 
Potential, has been known for over a century, its first successful implementation was 
not achieved until 1967 when Aziz and Hellums [7] solved the natural convection 
problem using this derived variable. The main reason for such a long delay has been 
due to the confusion involved in the determination of a set of suitable boundary 
conditions for the Vector Potential. First to resolve this problem were Hirasaki and 
Hellums [8], who formally derived a set of appropriate boundary conditions for a 
general hydrodynamic flow field. Their formulation was relatively simple for 
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confined-flow problems, which incidentally verified the correctness of the Aziz and 
Hellums model, but its extension into through-flow situations was much too complex 
to be useful. In a later paper, however, Hirasaki and Hellums [9] showed that simple 
boundary conditions are possible if a Scalar Potential is introduced to account for the 
through-flow velocities. But an obvious setback from this approach is the added 
burden on both the computational time and storage required in dealing with the 
additional variable. Another, less obvious but equally serious, problem is related to 
the effect of the Scalar Potential on the equation of continuity. 

It is the purpose of this paper to highlight some of the difficulties associated with 
the Vector/Scalar Potential formulation, and in particular to demonstrate that the 
presence of the Scalar Potential can in fact destroy the advantages inherent in the 
Vector Potential. A new formulation of the Vorticity-Vector Potential approach to 
the full 3-D Navier-Stokes equations for flows in ducts of arbitrary but constant 
cross section is then presented and shown to be superior to its predecessor. 

2. THE VECTOR AND SCALAR POTENTIAL FORMULATION 

The equations of motion for viscous incompressible laminar flow in non- 
dimensional vector form are 

z+(“. v)v=-VP+ $ V*V+F 
t ) (2-l) 

and 

v*v=o, (2.2) 

where V = (u, D, w) is the velocity vector, p is the pressure, Re is the Reynolds 
number and F is the body force. 

By taking the curl of Eq. (2.1), the pressure term is eliminated, yielding the 
vorticity transport equation 

~+(V+(&V)V= +--V’~+VXF, 
i 

(2.3) 

in which the vorticity r is defined as 

c=vxv. (2.4) 

For incompressible laminar flow, Hirasaki and Hellums [9] showed that it is possible 
to express the velocity field in terms of the curl of a Vector Potential v and the 
gradient of a Scalar Potential 4, such that 

V=Vxyl+V~. (2.5) 
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Noting that V . (V x WV) z 0, the substitution of Eq. (2.5) into Eq. (2.2) leads to 

v2$ii = 0. (2.6) 

The relation between w and 5 is established by taking the curl of Eq. (2.5) which 
yields 

V(V ’ lp) - v21y = 5. (2.7) 

It may be shown that a solenoidal solution of v is always possible, so that following 
Aziz and Hellums [7], Eq. (2.7) is reduced to 

v2yi=--5. w9 

It has already been demonstrated [9] that if the Scalar Potential were used to deal 
with the through-flow velocities, then simple boundary conditions on w are possible. 
Thus by setting 

on the boundaries, where 6 is the outward drawn unit normal, the boundary 
conditions on w for a simply connected region may be shown to be 

where subscripts t and n denote tangential and normal components, respectively. 
In principle, the Vector and Scalar Potential (w, 4) formulation provides an 

effective means of solving 3-D flow problems. In practice, however, this approach 
does suffer from certain drawbacks, some of which were discussed by Roache [lo]. 
One well-known disadvantage is the increased number of equations to be handled. In 
working with the primitive variables (p, V), it is usual to solve three momentum 
equations, a pressure equation and, typically, one other equation to correct for a non- 
zero dilatation (see, for example, [ll, 121). In the w, 4 method, there are three 
vorticity transport equations, three Poisson equations for the Vector Potential and a 
Laplace equation for the Scalar Potential. Admittedly in thep, V system, the pressure 
equation, being more involved and with mostly non-homogeneous derivative 
boundary conditions, is difficult to solve. But for 3-D computational studies, memory 
requirement tends to govern the feasibility of implementing a particular numerical 
scheme. It is therefore understandable that techniques which deal with the least 
number of variables have been strongly favoured. 

In using the \y, 4 formulation, Aregbesola and Burley [ 131 reduced somewhat the 
computational time required by assuming a known exit velocity profile, so that 4 
needed to be solved only once. However, this technique does not ease the memory 
requirement, and would not be applicable if the problem were extended to include 
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heat transfer, or to ducts of arbitrary cross sections where the outlet velocity profile is 
not known a priori. 

Another problem associated with this technique is of a numerical nature. It is well 
known that the V X w component of velocity satisfies the equation of continuity in 
the finite difference form irrespective of the accuracy of the solution for w. The same, 
however, cannot be said about the 04 component. Consider the meshing scheme as 
shown in Fig. 2.1 and assume that the central difference form of the Laplace equation 
0’4 = 0 may be solved exactly, so that at any node (i, j, k), 

qqi+ l)-2#+4(i- 1) +qj+ 1)-24f$(j- 1) 
Ax2 AJT2 

+ #(k+ l)-2#+4@- 1) =o 

AZ’ 
(2.1 1) 

Note that for clarity, the default values (i, j, k) are omitted, e.g., $(i, j. k + 1) is 
written as $(k + 1). 

Let V’ = (u’, a’, w’) be the irrotational part of the velocity field, that is, V’ = V#. 
Then the components of V’ expressed in central difference form become 

,,=$G+ 11-e- 1) 
2Ax ’ 

u, = m+ 1)-e- 1) 
2Ay ’ 

w ,  = W+ 1)-O- 1) 

242 ’ 

(2.12) 

FIG. 2.1. Meshing scheme 
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Since the divergence of V’ in central difference form is given by 

v v,= u’(i+ 1)-U’@- 1) +u’(j+ 1)-v’(j- 1) 
2Ax DAY 

w’(k + 
+ 

1) - w’(k - 1) 
242 ’ 

the substitution of Eqs. (2.12) into Eq. (2.13) leads to 

v v, = $(i + 2) -  24 + $w -  2) + $w + 2) -  24 + @(j -  2) 
(2Ax)’ (DAY)’ 

+ #(k + 2) -  24 f  #(k -  2) 
(24~)~ * 

(2.13) 

(2.14) 

Simple inspection reveals that the above is not identical to the LHS of Eq. (2.11). 
It therefore follows that V . V’, and hence V . V, will not in general vanish even if the 
finite difference form of V’$ is exactly zero. This is particularly true in regions where 
Q exhibits high rates of local variation. For flows in a rectangular duct, with 
boundary conditions used by Aregbesola and Burley, such local variations are indeed 
found to exist near the exit region of the duct. We note, however, that Eq. (2.14) is 
simply the finite difference Laplacian of $ based on a mesh configuration of 2Ax, 2Ay 
and 242. It is therefore of some comfort to know that if the mesh size were made 
increasingly small, then V . V’ as given by Eq. (2.14) would approach zero. But the 
significance of the above illustration is that the introduction of the Scalar Potential 
does in fact destroy the real advantage of using the Vector Potential, which is to 
assure local and global continuity irrespective of the chosen mesh-size. Further, the 
selection of a suitable small mesh is restricted, at least for the present, by computer 
capabilities. 

To investigate this problem, the duct flow example in [ 131 was solved using a 

FIG. 2.2. Axial velocity development (w, 4 formulation). Re = 10, x = OSD, y = 0.50. 



3-D DUCTFLOWPROBLEMS 103 

FIG. 2.3. Transverse velocity development (w, Q formulation). Re = 10, x = 0.250, .Y = OSD. 

9 x 9 x 17 mesh scheme at a Reynolds number of 10. The resulting discretized 
dilatation was indeed quite unacceptable for computational nodes near the exit. This 
was clearly illustrated by the unreasonable variations in all three velocity components 
in this region as may be seen in Figs. 2.2 and 2.3. When the mesh was extended to 
17 x 17 x 33, the error in the axial velocity was made less obvious, but non-sensical 
transverse velocities similar to those shown in Fig. 2.3 still appeared near the exit. It 
is our opinion that in order to achieve any reasonable results with this formulation a 
scheme with a minimum of 30 mesh points in each direction is required. This limit 
would of course have to be raised if the Reynolds number were increased. 

The necessity for maintaining a fine grid spacing, particularly near the exit, 
imposes yet another extremely serious, and perhaps tripling, restriction when dealing 
with duct flows. Unlike the (p, V) formulations where mesh transformation 
techniques are commonly employed to provide efficient use of grid points, it has been 
shown in the above example that the w, d formulation does not permit the mesh 
intervals along the axial direction to be progressively spread out. 

3. A NEW FORMULATION 

In view of the difficulties discussed in Section 2, a new formulation was devised for 
incompressible flows in ducts of constant cross section. The proposed method 
introduces a new irrotational component of velocity, w0 in place of V#, where w0 
(= wO(x, JJ)) is simply the normal component of the specified inlet velocity vector. 
The velocity field V may now be written as 

v=vx~+w,. (3.1) 
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An immediate observation from this definition of V is that the need to solve for 4 is 
eliminated. It is also important to note that computational storage is consequently 
reduced. A saving of L x M x N storage locations is achieved where L, it4 and N are 
the number of mesh points in the three spatial directions. Further, since 

vaw =wo(k+l)-wo(k-l)EO 
0 2Az 3 (3.2) 

the divergence of the irrotational component of velocity and its discretization are 
exactly zero. Hence, the continuity equation in finite difference form is now iden- 
tically satisfied. By making this simplification, the problems discussed in Section 2 
are effectively removed. Although it can easily be seen that neither the vorticity 
transport equation, Eq. (2.3), nor the relationship between w and 6, Eq. (2.8), is 
affected, the boundary conditions on w remain to be determined. 

Boundary Conditions on w 

Consider the solution region as shown in Fig. 3.1. Here Si, i = 1 to 6, are plane 
surfaces confining the region. 

Let S, and S, be the inlet and outlet planes of the duct, respectively, and S, to S, 
are impermeable solid surfaces representing the duct boundaries. Then the conser- 
vation of mass requires that 

6 V.dSi=O, i = 3,4, $6, 
Si 

and 

$, ifSi V . dS, = 0. 

Equations (3.3) and (3.4) can be used to determine the boundary conditions. 

(3.3) 

(3.4) 

FIG. 3.1. Solution region. 
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FIG. 3.2. Surface S,. 

(a) Solid Boundaries 

Consider, for example, the solid surface S, as shown in Fig. 3.2. The substitution 
of Eq. (3.1) into Eq. (3.3) yields 

6 (V x y + w,,) . dS, = 0. (3.5) 
s3 

Since w,, e dS, = 0 on S,, Eqs. (3.5) may be reduced to 

if 
(V x w) . dS, = 0. (3.6) 

S1 

By Stokes Theorem, the above equation becomes 

(3.7) 

where I, is the contour bounding S,. 
This, together with v = dy,/& - ~IJJ, fax = 0 everywhere on S,, is satisfied if the 

tangential components of w are zero on that surface. Further, since w is required to 
be solenoidal, it can be deduced that an appropriate set of boundary conditions for 
S,, and by the same token for S,, is 

@-0 w,=w,=;,- . (3.8) 

Similarly, the boundary conditions for S, and S, may be shown to be 

wx ‘c/y = v/z = ax = 0. 

(b) Inlet Boundary 

For the inlet plane, the substitution of V = w0 into Eq. (3.1) leads directly to 

vxqJ=o. (3.10) 
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Equation (3.10) is satisfied if the tangential components of w are set to zero. As for 
the impermeable boundaries, this leads to a zero normal derivative for the normal 
component. The inlet boundary conditions for w may therefore be specified as 

awz 0 Iyx=I//y=aZ= . (3.11) 

(c) Outlet Boundary 

In determining the outlet boundary conditions, Eq. (3.4) is rewritten as 

- 
8 wo. dS, = (V x w + wo) - dS, = Q, 

SI if S2 

where Q is the steady-state volumetric flow rate. 
Noting that for a constant cross-sectioned duct, 

(3.12) 

- 
8 w 0 wo.dS,, (3.13) 

SI 
ads,= fj 

S2 

it follows that 

@ 
(V x w). dS, = 0. (3.14) 

s2 

To show that this condition is already satisfied by the prescribed solid boundary 
conditions, consider the exit plane as shown in Fig. 3.3 The edge values shown are 
those given by Eqs. (3.8) and (3.9). By Stokes’ theorem, it is easily seen that 

j$ (Vn+dS2=$ \v.dZ,=O. (3.15) 
s2 12 

This means that global continuity is satisfied irrespective of the interior values of \~r 
on the exit plane (assuming no discontinuities in w). On any boundary, however, w 

Py=O s2 

-x 

Lvy=O 

1 sJx=o 

FIG. 3.3 The exit plane. 
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must be so derived that the velocity boundary conditions are satisfied. It is interesting 
to note that not all of the velocity components are required for such derivation. As 
demonstrated by Richardson and Cornish [ 141, two distinct sets of boundary 
conditions are possible depending on the choice of velocity components used. One, 
originally due to Hirasaki and Hellums [9], used only the normal velocity 
component, whereas the other, presented in [ 141, used only the tangential velocities at 
the boundaries. In a detailed investigation by Reizes et al. [ 151, it is pointed out that 
although neither set of formulations can guarantee no slip at the boundaries (due to 
numerical errors), the Hirasaki and Hellums approach at least enforces the prescribed 
normal velocity boundary conditions. Moreover, since the Richardson and Cornish 
formulation offers no such enforcement, the above workers encountered “leakage” 
through the boundaries whenever it was implemented in their enclosed convection 
models. With this in mind, the exit boundary conditions on w for the present model 
are developed by considering the axial velocity 

M’+%+M:o. 
3Y 

For the exit, fully developed conditions are assumed, so that 

Differentiating Eq. (3.16) with respect to z and then substituting into Eq. (3.17) leads 
to 

which is satisfied if on the exit plane 

The final condition is then obtained from the solenoidal condition, so that 

3$=- (!%+!Y!i). 

(3.19) 

(3.20) 

Although the foregoing analysis is based on a duct of rectangular cross section, it 
may easily be extended to ducts of arbitrary but constant cross section. It should be 
noted that the boundary conditions for v on all except the exit plane have remained 
unchanged from those derived by Hirasaki and Hellums 191; that is, zero normal 
derivatives and zero tangential components of w. For the exit plane, the relatively 
simple and readily implementable conditions Eq. (3.19) and Eq. (3.20) are applied. 



108 WONG AND REIZES 

Other Boundary Conditions 

(a) Velocity 

The velocity boundary conditions are straightforward and the usual assumptions of 
no-slip at the solid boundaries together with a uniform inlet profile are applied. 

(b) Vorticity 

Like the Vector Potential, the boundary conditions for vorticity have been a 
subject of much debate for some time. A multitude of formulations have been 
presented for two-dimensional studies, each claiming various advantages. (See 
Roache [lo].) These include both first- and second-order schemes with some in terms 
of velocity and others related to the stream function and/or vorticity at interior mesh 
points. However, it is now generally accepted that the Woods formulation [ 161 is the 
most suitable for low to moderate Reynolds number flows in two dimensions. A 
similar approach is therefore adopted here, which leads to a second-order formulation 
of the boundary vorticities in terms of the Vector Potential. The final results differ 
from those derived earlier by Mallinson and de Vahl Davis [ 171 due to the improved 
treatment of the approximate w - c relationship near the boundaries. 

Consider, for example, the boundary contained in the x - z plane (Fig. 3.2). The 
Taylor series expansion of v/X at a mesh point adjacent to the boundary is given by 

y/,(l)=PX(o)+~Y~(0)+~~ dY2 a*wx (0) 

++g (0) + O(dY4), 

where the indices 0 and 1 denote y = 0 and y = dy, respectively. 
The first term of the expansion is equal to zero since the tangential component of w 

vanishes on the impermeable boundary. The second term may readily be calculated 
numerically. But to avoid the necessity for a backward difference representation, it is 
noted that 

and since w = 0 on the boundary, the derivative in the second term may therefore be 
written as 

(3.23) 

From Eq. (2.8) and Eq. (3.8), the second-order derivative in the third term may easily 
be identified as 

3 (0) = -[,(O). (3.24) 
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Finally, to obtain an expression for the fourth term, a linear distribution of vorticity 
over the first mesh interval is assumed, so that 

ix = i,(O) + 5 [L(l) - L(O>l* (3.25) 

To approximate Eq. (2.8) over this interval, [, is also written as 

(3.26) 

(This differs from the expression used in [ 171, where a less accurate representation 
C, = - c?*w,/@* for 0 < y < dy is assumed.) 

Differentiating Eq. (3.26) with respect to y yields 

xx a3wx 1 
ay --gtdy Lo)+ ay* S(l)/. 

That is, 

ah. -=-%+-& i,(1)+ 
ay I 

$wJ. 

(3.27) 

(3.28) 

From this, together with the assumption of linear variation of 6 over the first mesh 
interval, Eq. (3.25), it is seen that the third-order derivative in Eq. (3.21) may be 
written as 

(3.29) 

Substituting Eqs. (3.23), (3.24) and (3.29) into Eq. (3.21) leads to the relationship 
between the boundary vorticity and the Vector Potential, viz., 

CJO)=-+y 1 t $- 2 (0) t wg 1 

l !J!% (1) t O(dy2). +3- ay' (3.30) 

For the z component of vorticity at this boundary, a similar technique is applied, 
resulting in 

~z(o)-s&!i +-+2(o)+- ; 3 (1) + O(dy2). (3.3 1) 
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The third and final boundary vorticity may be deduced from the no-slip conditions 
and the definition of vorticity itself, Eq. (2.4), giving 

i,(O) = 0. (3.32) 

Following the same approach, similar expressions may be found for the components 
of vorticity on the other boundaries. 

Having established the necessary equations and boundary conditions the problem 
is now fully specified. All that remains is to implement an appropriate solution 
procedure in solving these equations. 

4. SOLUTION PROCEDURE 

All relevant equations (Eqs. (2.3), Eq. (2.8) and the corresponding boundary 
conditions) were transformed into their finite difference representations. The time 
derivatives appearing in the vorticity transport equations were replaced with forward 
differences whereas all spatial derivatives were represented by the second-order 
central difference approximations. The transient vorticity transport equations were 
conveniently solved using the Samarskii-Andreyev AD1 scheme [ 181. For the sake of 
accuracy, components of the Vector Potential were determined using the Discrete 
Fourier Analysis method [ 191, incorporating a Fast Fourier Transform algorithm. 

In our test problems, a velocity field of V = w,, was specified as the initial 
conditions with all other fields set to zero. Where possible, however, the converged 
result for a Reynolds number of the same order of magnitude was used to initiate the 
solution process. The iterative cycle consists of the following: 

(1) The three components of vorticity are obtained using Eq. (2.3). 
(2) The x and y components of Vector Potential are determined from Eq. (2.8) 

with boundary conditions given by Eqs. (3.8), (3.9), (3.11) and (3.19). 
(3) The z component of Vector Potential is then obtained using Eq. (2.8) with 

boundary conditions given by Eqs. (3.8), (3.9), (3.11) and (3.20). 
(4) The components of velocity are then calculated using Eq. (3.1). 
(5) New vorticity boundary conditions are obtained using Eqs. (3.30), (3.31) and 

(3.32). 
(6) Test for convergence and, if necessary, return to (1). Since only the vorticity 

transport equations contain transient terms, the solution was considered converged 
when these terms diminish to some specified value, say, lo-‘. 
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5. RESULTS AND DISCUSSION 

The formulation proposed in this paper is applicable to incompressible flows in 
ducts with a arbitrary but constant cross section. Since abundant data are available 
for flows in square ducts, computations were carried out for such cases so that some 
meaningful evaluation of the method could be made. Results were obtained for a 
range of Reynolds numbers between 1 and 200. Typically, a mesh of 9 X 9 X 17 was 
used for the lower Re(< loo), while a 17 x 17 x 33 grid was used for the higher Re 
cases. Due to geometric and dynamic symmetry, only one-quarter of the duct cross 
section was considered. The overall length of each duct was made sufftciently long so 
as to ensure, or at least approximate, fully developed conditions. To make efficient 
use of the computational nodes, the mesh transformation 

2 =A ln(B . z + 1) (5.1) 

was applied to the axial coordinate in which 

A and B are prescribed constants, 
z is the actual coordinate in the axial direction, and 
2 is the transformed coordinate. 

Typically, the degree of transformation was chosen so that the first mesh interval in 
the z direction was approximately equal to mesh intervals in the x or y direction. 
Some numerical experiments have indicated that a transformed mesh of 17 X 17 X 33 
produces for all practical purposes identical results to those of a uniform grid of 
17 x 17 x 65. Such transformation represents a great saving in computational cost, 
which for reasons presented in Section 2 could not have been possible with the 
Hirasaki and Hellums formulation. 

The centre line velocity gives some insight into the development of flow in the duct, 
and results for the various cases are presented in Fig. 5.1. The relatively slow 
development of a low Re flow is expected since mass and momentum are transferred 

20 

Goldstein & W-SC 

--  
w 

Re=loo 

VO ~~-- Aregbesola 8 Burley 

(Re=50) 

15 

FIG. 5.1. Centre line velocity development. 
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principally by means of diffusion. When Re increases, the advection terms in the 
momentum equation take effect, until the flow becomes totally convective as Re + co. 
(Of course, turbulent conditions would prevent the occurrence of such a theoretical 
event.) What is unexpected, or at least not obvious, is how rapidly the flow 
development becomes characterised by the non-dimensional distance z/(D Re), in 
which D is the hydraulic diameter. In Fig. 5.1, it is seen that, although there is 
substantial difference between the cases of Re = 10 and 50, the results for Re = 100 
and 200 are virtually indistinguishable. From this, it is concluded that further 
increases in the Reynolds number would not cause any appreciable changes in the 
development characteristics. The excellent agreement between the current results for 
Re = 200 and the experimental results of Goldstein and Kreid [20] as well as with 
other numerical solutions [21] serve to support such a conjecture. 

Of the various duct flow models developed to date, most have employed the ideas 
of Patankar and Spalding [21], who assumed the flow to be parabolic. Although this 
assumption allows the use of a marching solution technique, it does limit the solution 
to high Reynolds numbers as well as restricting computations to cases where the 
axial velocity is everywhere positive. As a result, little information is available for 
flows at low Reynolds numbers. An extensive literature search yielded only the result 
of Aregbesola and Burley [ 131 for Re = 50. This is shown as the broken line in 
Fig. 5.1. The discrepancies, particularly near the inlet region, are most probably 
attributed by the upwind differencing used by these authors. This technique, besides 
being unwarranted for such low Re, has the effect of artificially lowering the 
Reynolds number and hence may be the reason for their curve lying slightly below 
that of the present solution. Another factor which could have affected the accuracy of 
their solution is the use of a staggered grid system which necessitated averaging of 
advection terms in the vorticity transport equation. For example, the velocity in the 
term u(a[/ax) was calculated as the average of the velocities from eight neigbouring 
points. Such interpolation was not required in the present work since a single- 
coincident grid system was employed. 

Velocity profiles are shown in Figs. 5.2 and 5.3 for two cases. As can be seen in 
the higher Re case, the agreement between the numerical results and the experimental 

x 
0 

00 
00 0 025 0 050 0.075 _ 

FIG. 5.2. Velocity profiles (Re = 100). 
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FIG. 5.3. Velocity profiles (Re = IO). 

results [20] is excellent. An interesting feature of the computed profiles is the local 
maxima appearing near the walls which gradually approach the duct axis to form a 
single maximum. This phenomenon has been noted in many two-dimensional models. 
In particular, Friedman et al. [22] presented a detailed account on the possible 
causes of these “kinks.” After some numerical experimentation with the inlet profiles, 
they concluded that the kinks are the results of the singularity imposed on the axial 
velocity at the leading edge. On the other hand, Abarbanel et al. [23] confirm the 
existence of these kinks as part of the analytical solution of the problem, and that 
they are not the results of numerical errors or the discontinuity of velocity at the 
inlet. Nguyen [24], by assuming the normal derivative of the entrance vorticity to be 
zero rather than setting the vorticity to zero in his parallel plate problem, was 
successful in removing the kinks, although this itself is no justification for using such 
unorthodox boundary conditions. Perhaps one sure way to resolve this mystery would 
be to carry out experiments which actually have inlet conditions as used in the 
numerical models. 

In conclusion, a new formulation of the Vorticity-Vector Potential method for 
constant cross section duct flow problems is presented. Its capability in handling 
flows over a wide range of Re is demonstrated, and its potential in dealing with flow 
situations in which other models become inadequate is implied. For instance, it can 
handle low Reynolds number or recirculating flows for which the parabolic flow 
models are not applicable. It guarantees a zero divergence of velocity while the usual 
p, V method can at best approximate global continuity. Finally, it allows the efficient 
use of computational nodes while the commonly accepted Vector and Scalar 
Potential formulation requires a line grid spacing at regions where little variation of 
velocity takes place. 
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